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Abstract. Periodic waves on the interface between a lower layer of heavy fluid and an upper light fluid extending
to infinity are considered both exactly and in a shallow-layer approximation. The latter leads to a composite long-
wave equation combining Korteweg–de Vries and Benjamin–Ono characteristics, which is consistent in order
when the density of the upper fluid is much less than that of the shallow lower layer. Comparison is made between
numerical results from the exact and approximate theories, and with the analytic results of the separate Korteweg–
de Vries and Benjamin–Ono equations which are special cases.
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1. Introduction

Consider a periodic wave of wavelengthλ = 2π/k, with the wave numberk, on the interface
y = η(x) between a layer 0< y < η of fluid of constant densityρ1 and an upper fluid in
y > η(x) of densityρ2 < ρ1. The flow is assumed to be steady, with a uniform stream of
magnitudec at y = +∞. This is as seen in a frame of reference moving with the wave, and
hencec can also be interpreted as the wave speed in a frame of reference fixed with respect to
a stationary fluid at infinity.

In the present article we shall define a reference depthh of the heavy layer as the average
interface height over a wavelength,i.e.by

h = 1

λ

∫ λ

0
η(x)dx. (1)

This is a somewhat arbitrary definition, and there are circumstances in which other choices of
a reference depthh are more suitable. For example, the special case of a solitary wave is just
the limit asλ→ ∞ or k → 0, but in that case it is more convenient before lettingk → 0 to
defineh as the depth at the troughs of the periodic wave, in which case the limitingh is the
layer depth atx = ±∞, with the whole solitary wave lying abovey = h. We could also in
some cases allowh to be the arithmetic mean of trough and crest heights, etc., but prefer the
above-defined mean height. We define the wave heightH as the trough-to-crest distance, and
for some purposes consider all quantities to be parametrised by (among others) the parameters
k,H , e.g.c = c(k,H).

Linearised theory applies for sufficiently smallH relative to all other length scales, and
indicates a sinusoidal wave

η = h+ 1
2H coskx (2)
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72 E. O. Tuck and L. H. Wiryanto

with (see Benjamin [1])

c2 = g

k

[
(ρ1− ρ2) sinhkh

ρ1 coshkh+ ρ2 sinhkh

]
. (3)

This definesc(k,0). We are also interested in the first terms in the long-wave,i.e. small-k
expansion of this expression, namely

c(k,0)

c0
= 1− 1

2

ρ2

ρ1
kh+

[
3

8

(
ρ2

ρ1

)2

− 1

6

]
k2h2+ . . . , (4)

where

c0 =
√
g∗h (5)

defines the classical linearised long-wave speed, with

g∗ =
(

1− ρ2

ρ1

)
g (6)

as reduced gravity.
Our task now is to generalise these results to nonzeroH . We first do this exactly, con-

structing a numerical solution without further approximation. We then develop an approximate
equation describing the long-wave small-height case where bothkh andH/h are small.

It is appropriate to quote the final equation immediately. Namely, iff (x) = η(x)/h − 1
denotes the relative perturbation of the interface profile from its undisturbed planey = h, then
f (x) satisfies the integro-differential equation

−2
[
c

c0
− 1

]
f (x)+ 3

2[f (x)]2 + 1
3h

2f ′′(x)+ ρ2

ρ1
hHf ′(x) = 3

2f
2 , (7)

where

Hf ′(x) = 1

π

∫ ∞
−∞

f ′(ξ)
ξ − x dξ (8)

is a Hilbert transform. The right-hand side of (7) is a normalisation constant, withf 2 the mean
square value off (x), all but the squared term on the left having zero mean.

The Korteweg–de Vries (KdV) equation [2] is that obtained from (7) by omitting the term
in Hf ′(x), whereas the Benjamin–Ono (BO) equation ([2, 3]) is that obtained by omitting
the term inf ′′(x). These equations are often encountered in a once-differentiated form, where
the constant on the right is eliminated, and also often in a time-dependent form for unsteady
waves in a fixed frame of reference.

The KdV equation is normally considered to hold when there is no upper fluid at all,i.e.
ρ2 = 0, and demands thatH/h = O(kh)2. The BO equation is normally considered to
hold when there is an upper fluid of finite densityρ2, and demandsH/h = O(kh). The full
Equation (7) with all four terms present on the left can be seen to hold formally when the
density ratio is small, formally withH/h = O(kh)2 andρ2/ρ1 = O(kh), but in any case is
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a useful empirical interpolator (with respect to the density) between the two established KdV
and BO approximations. It may be called the ‘composite long-wave equation’ (CLW).

There is already in the literature ([4, 5]) an ‘intermediate long-wave equation’ (ILW) which
plays a similar interpolating role, but with respect to the depth rather than the density. That
equation applies to the case where the extent of the upper fluid is ‘finite’, in the sense that
its height is large compared to the (small) height of the lower layer and comparable to the
wavelength. This equation is essentially the same as the BO equation, but with the Hilbert
transform operator (8) replaced by a more general integro-differential operator. This operator
reduces to the Hilbert transform as the upper height tends to infinity, so recovering the BO
equation. On the other hand, it yields essentially a two-fluid version of the KdV equation ([6,
7]) in the limit as the upper height reduces to a value comparable to the lower height, so that
the whole fluid domain is then shallow.

In order to provide a benchmark against which to test the approximate KdV, CLW and BO
theories, we must compute ‘exact’ solutions numerically. There have been many such numer-
ical computations for free-surface waves, but few interfacial waves. Rienecker and Fenton [8]
developed a method to calculate free-surface waves based on a truncated Fourier series. A
closed system of equations is obtained by specifying two quantities defining the wave, such
as wave height and period, so that the solution can then be obtained by the application of
Newton’s method to a system of discretised algebraic equations. This Fourier approximation
is valid both for deep and shallow water, in which the wave is periodic. This method is further
developed to calculate interface periodic waves in the present paper. Many other methods
are available such as that given by Scullen and Tuck [9] who apply isolated sources located
outside the flow domain to present the velocity potential in a series form. Vanden–Broeck and
Schwartz [10] used an integral equation method to calculate steep gravity waves in shallow
water. In earlier numerical work, extensions of Stokes’s [11] series expansion method were
used by Schwartz [12], Cokelet [13] and Longuet–Higgins [14] in infinite depth of water.

Numerical computations for waves on the interface between two unbounded fluids of
different density can be found in papers by Holyer [15] and Saffman and Yuen [16] who
presented the velocity potential of both fluids and the interface as Fourier series. Meanwhile,
Vanden-Broeck [17] formulated the problem as a nonlinear integro-differential equation for
the unknown shape of the interface.

The performance of most numerical methods for solving exact nonlinear waves deteriorates
as the wave gets steeper, and these methods usually fail before we reach the highest possible
wave. It is therefore an especially challenging task to compute these highest waves. For free-
surface waves, Stokes [11] deduced that the wave would have a stagnation point at 1200

crest for free-surface problems. Stokes formulated the problem as a perturbation expansion
and obtained the solution to third order for waves on an infinitely deep fluid. This expansion
was extended by Schwartz [12] and Cokelet [13] to determine the highest wave for various
values of the water depth. Alternatively, Michell [18], in calculating the highest Stokes waves,
developed a series solution for the complex velocity in terms of the complex potential. For
interfacial waves, Stokes’s 1200 crest behaviour cannot occur, since this would imply infinite
velocity in the fluid above the crest. As an alternative highest-wave criterion, Holyer [15]
suggested that waves are limited by the occurrance of a vertical tangent in the interface. This
criterion was not supported by Saffman and Yuen’s conjecture [16],i.e. the waves exist until
the interface intersects itself. In our calculation, the computer program fails to converge when
attempting calculations at high wave amplitudes before satisfying Holyer’s criterion. Further
work is needed on this matter.
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2. Exact equations and solution procedure

Assuming irrotational flow of an inviscid incompressible fluid in each separate region, we
must solve Laplace’s equation

∇2φ1 = ∇2φ2 = 0 (9)

for the separate velocity potentialsφ1(x, y) in 0 < y < η(x) andφ2(x, y) in y > η(x). The
bottom condition is

∂φ1

∂y
= 0 ony = 0 (10)

and the condition at infinity is

φ2→ cx asy →∞ . (11)

The two potentialsφ1, φ2 are matched across the interfacey = η, which is a stream surface,
so both normal derivatives vanish,i.e.

∂φ1

∂y
− η′(x)∂φ1

∂x
= 0 (12)

and

∂φ2

∂y
− η′(x)∂φ2

∂x
= 0 (13)

on y = η(x). Finally, we observe that the pressure is continuous across the interface, so that
(using Bernoulli’s equation)

−ρ1

[
1
2φ

2
1x + 1

2φ
2
1y + gη

]
+ ρ2

[
1
2φ

2
2x + 1

2φ
2
2y + gη

]
= P = constant. (14)

The value of the pressure constantP in (14) is one of the parameters ultimately determining
the form of the wave.

In order to develop an exact numerical solution to this problem, it is somewhat more
convenient to use the stream functionψ , the harmonic conjugate toφ. Then suitable solutions
of Laplace’s equation can be represented as series

ψ1(x, y) = cy +
∞∑
j=1

b1j sinh(jky) cos(jkx) (15)

and

ψ2(x, y) = cy +
∞∑
j=1

b2j exp(−jky) cos(jkx). (16)

The coefficientsb1j andb2j , j = 1,2, . . ., are constants to be determined. These representa-
tions satisfy conjugates to (10) and (11).
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On steady periodic interfacial waves75

To determine the interface profiley = η(x) and the speedc, the series are truncated after
the term withj = N and substituted in the kinematic and dynamic conditions (12), (13) and
(14). In terms ofψ1 andψ2, these boundary conditions can be written as

ψ1(x, η) = q1, (17)

ψ2(x, η) = q2, (18)

and

1

2

[
(ψ2

1x + ψ2
1y)−

ρ2

ρ1
(ψ2

2x + ψ2
2y)

]
+ g∗η = p1, (19)

whereq1, q2 andp1 = −P/ρ1 are unknown constants. Finally, the interface is discretised,
becomingN + 1 points with coordinate(x0, η0), . . . , (xN , ηN) on a half-wavelength interval,
wherex0 = 0 is located at a crest, andxN = λ/2 at a trough.

The above discretisation givesN + 1 equations for each of the three boundary conditions,
but the resulting system is not yet closed, since there are a total of 3N+ 5 unknowns, namely

{b1j , b2j ; j = 1, . . . N}, {ηj ; j = 0, . . . N}, c, q1, q2, p1.

Two further equations are therefore required. These equations are obtained from the prescribed
characteristics of the wave,i.e. the wave heightH and the average interface heighth. Hence,
the extra two equations areH = η0−ηN and (1), in which the integral can be evaluated by the
trapezoidal method. In practice, we nondimensionalize withλ set to 2π . We now have 3N +5
equations in 3N + 5 unknowns, which are solved by standard methods. Results are presented
later.

3. Composite long-wave approximation

We now assume that the interface is a small perturbation of the uniform planey = h. Since that
plane is itself a small departure from the bottom surfacey = 0, it is important that the small
dimensionless parameter which measures the wave height is taken asH/h, i.e. wave height
relative to lower fluid depth. Meanwhile the appropriate nondimensional measure of smallness
of h itself is kh, which is proportional to the depth to wavelength ratio. These two small
parameterskh andH/h are in principle independent, but there are certain special relationships
between them, in which the final approximate equations retain consistency. However, we now
derive approximations to the exact equations without specifying any such a relationship.

Thus, in the following derivation, we retain leading-order terms in powers ofkh andH/h.
The errors in each equation are not explicitly stated, but in every case are at least one power of
either of these parameters smaller than the orders of any retained term. Where the equations
contain a ‘constant’, the order of magnitude of this constant is not specified, but is left to be
determined by the final equation.

For smallH/h, it is clear that the upper region flow is a small perturbation of the uniform
streamφ2 = cx, which we write

φ2 = cx +82 (20)
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for some perturbation potential82. The latter satisfies a linearised version of the boundary
condition (13), namely

∂82

∂y
= cη′(x) (21)

on the limiting planey = h. Hence, as in thin airfoil theory (Newman, [19]), the solution in
y > h is

82(x, y) = 1

π

∫ ∞
−∞

cη′(ξ) log
√
(x − ξ)2+ (y − h)2 dξ (22)

from which follows immediately the perturbationx-wise velocity on the top side of the
interface to leading order as

82x(x, h) = −cHη′(x) , (23)

whereH is the Hilbert transform defined in (8).
The connection between upper and lower regions is now entirely via the pressure continuity

condition, which reduces to

−ρ1

[
1
2φ

2
1x + 1

2φ
2
1y + gη

]
+ ρ2

[
c82x + gη

] = constant

or

1
2φ

2
1x + 1

2φ
2
1y + g∗η +

ρ2

ρ1
c2Hη′(x) = constant (24)

whereg∗ is as defined in (6).
The flow in the lower layer is strongly dependent onkh, and in that region we concentrate

first on a small-depth expansion. This is of the form of a truncated Taylor series iny, i.e.

φ1(x, y) = 81(x)− 1
2y

28′′1(x)+ 1
24y

48′′′′1 (x) (25)

which automatically satisfies the Laplace equation and the bottom condition for any81. We
write u(x) = 8′1(x). Substitution in the kinematic condition (12) on the interface yields

−ηu′ + 1
6η

3u′′′ = η′ [u− 1
2η

2u′′
]

from which follows the one-dimensional continuity equation

ηu− 1
6η

3u′′ = constant. (26)

A similar substitution in the pressure continuity equation (24) yields

1
2u

2 + 1
2η

2(u′2− uu′′)+ g∗η + ρ2

ρ1
c2Hη′(x) = constant. (27)

We are now in a position to further expand the lower-region flow with respect toH/h. In
contrast to the upper-region expansion, it is necessary to carry terms of at least second order
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in wave height. Thus we writeu = c+ u1+ u2 andη = h+ η1+ η2 where subscripts denote
orders with respect toH/h. Now (26) gives[

hu1+ cη1
]+ [hu2+ cη2+ u1η1

]− 1
6h

3u′′1 = constant. (28)

Similarly, (27) gives[
cu1+ g∗η1

]+ [cu2+ g∗η2 + 1
2u

2
1

]− 1
2h

2cu′′1 +
ρ2

ρ1
c2Hη′ = constant. (29)

If we keep only the leading terms in (28), (29), these equations are consistent only ifc = c0,
confirming the linearised long-wave result. Hence, in generalc = c0+c1+ . . ., wherec1 is the
first wave-height-dependent correction to the wave speed. At the same time, to leading order,
(28) gives the relationship

u1 = −c0

h
η1 (30)

between fluid velocity and wave elevation, by whichu1 can be eliminated from (28) and (29).
Usingc = c0+c1 in the first terms and replacingc by c0 in all but the first terms of (28) and

(29), and subtracting (28)/h from (29)/c0 we also eliminateu2, η2, giving a single equation
for η1(x), namely

−2
c1

c0

η1

h
+ 3

2

(η1

h

)2+ 1
3h

2
(η1

h

)′′ + ρ2

ρ1
hH

(η1

h

)′ = constant (31)

which is (7), when the constant on the right is determined by integrating both sides over a
wavelength.

Equation (31) is consistent in order with all terms retained and all ofO(kh)4, if H/h =
O(kh)2 andρ2/ρ1 = O(kh). It is reduced to the KdV equation ifρ2 = 0, or indeed whenever
ρ2/ρ1 is of smaller order thanO(kh). On the other hand, the BO equation is the approximation
that arises with the second derivative term omitted and all remaining terms ofO(kh)2, if
H/h = O(kh) andρ2/ρ1 = O(1).

4. KdV and BO analytic solutions

4.1. KdV SOLUTION

In the case where there is no upper fluid (ρ2 = 0), the approximate equation is of KdV type.
The periodic solution is a cnoidal function, namely

f (x) = a + b cn2(x/m), b = 4
3h

2m, a = − b
K

[
E − (1−m)K

m

]
,

whereK is a complete elliptic integral

K =
∫ π/2

0

dθ√
1−m sin2 θ

,
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andE is the complete elliptic integral of the second kind,

E =
∫ π/2

0

√
1−m sin2 θ dθ.

The parameterm determines the wavelength, and 0< m < 1 withm = 0 for cosine waves
andm→ 1 for solitary ones. Moreover, the wave speed can be related to the parametera, that
is

c/c0 = 1+ 3
2a − 2

3h
2(1− 2m).

4.2. BOSOLUTION

In the case where the second derivative term in the CLW equation (7) is omitted, giving the
BO equation, we summarise the analytic solution as given by Benjamin [1], namely

f (x) = 2
3R

[
1− β2

1+ β2+ 2β coskx
− 1

]
with

c/c0 = 1+ R
[

1

2

(
1+ β2

1− β2

)
− 1

]
,

where

R = ρ2

ρ1
kh.

Hence, the wave height can be represented as

H/h = 8

3
R

β

1− β2
.

If this is used to eliminateβ in c/c0, we obtain

c/c0 = 1− R +
√

1

4
R2+ 9

64

(
H

h

)2

.

Hereβ is an input parameter ultimately determining the wave height, and 0< β < 1, with
β ≈ 0 for infinitesimal waves, andβ → 1 for waves of maximum height.

5. Numerical results

The exact numerical procedure developed in Section 2 is used to compute the interfacial profile
y = η(x) and the speedc, for various values of the three given non-dimensional parameters
ρ2/ρ1, kh andH/h. The speed is presented in the form of the ratioc/c0 for scaling purposes,
so that it can be plotted versusH/h on the same plane for variousρ2/ρ1. The closed system
of Equations (15) and (16) is solved by the NAG routine IC05NBF and the integral in (1) is
calculated by ID01GAF. Accuracy forc/c0 of at least 5 decimals is achieved forN > 25.
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Most of the calculations are performed withN = 30. As the initial guess, a simple cosine
profile is used where the stream functions (15) and (16) contain only two non-zero terms.

The approximate CLW equation for the scaled interfacial wave elevationf (x) is (7), which
also reduces in special cases to either the KdV or BO equation. The analytic solution of these
special equations is given in the previous section, and is such thatη andc/c0 can be calculated
explicitly after balancing the characteristics of the wave. The full CLW approximate equation
does not appear to have such an analytic solution, and must itself be solved numerically. This
can be done by a truncated cosine Fourier series

f (x) =
N∑
j=1

aj cos(j x), (32)

for (7), sincef̄ = 0 andf is assumed an even function. The procedure is similar to that
used for the exact problem,i.e. we determineaj (j = 1,2, . . . , N), c/c0 andδ denoting the
right-hand side of (7). We can check the result by comparingδ with the value3

2f
2 calculated

from the mean square value of the series (32), and accurate agreement is achieved to at least
5 decimals. This numerical method can also be used to recalculate KdV and BO solutions,
where the result is also in good agreement with the analytic solutions.

In discussing the results, we present wave speeds and profiles in different subsections. We
illustrate the profiles only in a half-wavelength interval[0, π/2].
5.1. WAVE SPEEDS

The results forc/c0 (exact and approximations) are discussed below in two cases, namely for
H/h = 0 (corresponding to linearised theory), and forH/h 6= 0, based on our numerical
results. The wave speeds are first calculated at the typical valuekh = 0·1, for variousρ2/ρ1.
Then, these calculations are repeated forkh = 0·2 to observe the effect of this parameter.

We first consider the relation (4) from the linear theory. The approximations of (4) corre-
sponding to the approximate equations are

CLW : c(k,0)

c0
= 1− 1

2

ρ2

ρ1
kh− 1

6k
2h2, (33)

KdV : c(k,0)

c0
= 1− 1

6k
2h2, (34)

BO : c(k,0)

c0
= 1− 1

2

ρ2

ρ1
kh. (35)

The relation (34) is the limiting case of (33) withρ2/ρ1→ 0. Hence, we focus our description
below only on (33) and (35).

In comparing (4) to (33) and (35), we note that the dispersion relation (33) has a truncation
error 3(ρ2/ρ1)

2(kh)2/8. This error is less than the third term of (4), which is the truncating
error of the BO dispersion relation (35), whenρ2/ρ1 < 0.471 for any valuekh. Therefore,
the CLW equation is the appropriate approximation in that interval for the problem here. In
contrast, (35) gives smaller error forρ2/ρ1 > 0·471, and the third term of (4) reaches zero at
ρ2/ρ1 = 2/3.
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Figure 1. Plot of the percentage error versusρ2/ρ1 at kh = 0·1,H/h = 0·01.

Now, we define the percentage error ofc/c0 forH/h 6= 0 from the CLW and BO equations
with respect to the exact wave-speed, namely

eCLW = |c/c0(exact)− c/c0(CLW)| 100%, (36)

eBO = |c/c0(exact)− c/c0(BO)|100%. (37)

A plot of eCLW andeBO versusρ2/ρ1 is shown in Figure 1 forkh = 0·1 and H/h= 0·01.
For small values ofρ2/ρ1, the CLW equation gives a good agreement to the exact result. We
found that 0·02% error is reached atρ2/ρ1 = 0·2, and this error increases on increasingρ2/ρ1.
Meanwhile, the BO equation gives 0.147% error at the same valueρ2/ρ1 = 0·2. The curve of
the BO error reaches a minimum value atρ2/ρ1 = 0·652, and then increases again. The pattern
of those curves confirms the result described above from the linear theory. The intersection
point here corresponds to the critical value ofρ2/ρ1 where the CLW and BO equations give
the same error. We found that this intersection point is atρ2/ρ1 = 0·445 with 0·084% error.

Figure 2. Plot of wave speedc/c0 versusH/h at
kh = 0·1.

Figure 3. Plot of wave speedc/c0 versusH/h at
kh = 0·2.

In describing our results for variousH/h, we show a plot ofc/c0 versusH/h in Figure 2
for ρ2/ρ1 = 0·2 and 0·69 at the heavy-fluid depthkh = 0·1. The choice of these two values of
ρ2/ρ1 is based on the percentage error computed above, where the BO approximation is less
accurate than the CLW approximation atρ2/ρ1 = 0·2 and the other way around forρ2/ρ1 =
0·69. Therefore, we compare the exact wave-speed only with one of those approximations for
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each valueρ2/ρ1 given above. The maximum values ofH/h that can be used to calculatec/c0

exactly by our numerical procedure areH/h = 0·068 for ρ2/ρ1 = 0·2 and H/h= 0·181
for ρ2/ρ1 = 0·69 but in Figure 2, we give results only up toH/h = 0·15. The curve of the
exact wave-speed forρ2/ρ1 = 0·2 is accompanied with the result from the CLW equation,
and the exact curve forρ2/ρ1 = 0·69 is shown together with the result from the BO equation.
If we tolerate 0·02% error from the exact speed, our computations give the maximum CLW
wave-heightH/h = 0·058 forρ2/ρ1 = 0·2 and the maximum BO wave-heightH/h = 0·028
for ρ2/ρ1 = 0·69.

All we have explained in the above are typical calculations for the shallow depthkh = 0·1.
Another less-shallow nondimensional reference depth,kh = 0·2, is used to repeat the previous
discussion, so that we can observe the effect of this depth parameter in decreasing the accuracy
of the shallow-water approximate theory. The result is shown as a plot ofc/c0 versusH/h
in Figure 3. We can compare this figure to Figure 2. At small values ofH/h, the plot shows
a difference between exact and approximate speeds,i.e. for biggerkh the difference is also
bigger. As an illustration, we obtainedeCLW = eBO = 0·02% in Figure 2, andeCLW = 0·104%,
eBO = 0·098% in Figure 3 at the same valueH/h = 0·01. This agrees with the result at
H/h = 0 from the linear theory where the truncation error from (4) is of order(kh)3.

5.2. PROFILES

As we can see in Figure 2,H/h = 0·06 is a relatively high wave, but still one where the
exact numerical procedure converges for allρ2/ρ1. This value ofH/h is used to test the
character of the interfacial profile. We first observe the variation of the exact profile for various
ρ2/ρ1. A sharp-crested wave with a flat trough is the characteristic of smallρ2/ρ1. For larger
values ofρ2/ρ1 (at the same valueH/h = 0·06), the pointx = x1/2 corresponding to the
mid-level between the crest and the trough, shifts to the right and is followed by decreasing
η(x1/2) towardskh, so that the profile becomes more symmetric between crest and trough,
and approaches a cosine form asρ2/ρ1→ 1.

The difference between exact and approximate profiles is affected by changingρ2/ρ1.
Sharp-crested approximate waves (BO and CLW) are also obtained for smallρ2/ρ1, but the
BO equation produces unreasonably sharper crests, which are very much different from the
exact profile,i.e. they have much smallerx1/2 and much higherηcrest andηtrough than the xact
profiles. If we increaseρ2/ρ1, this error in the BO approximation becomes less significant.
However, the CLW profile is still closer to the exact profile, and remains as accurate at finite
ρ2/ρ1 as it was for smallρ2/ρ1. This can be seen in Figures 4 and 5, which show the BO, CLW
and exact profiles for two different values ofρ2/ρ1, i.e. ρ2/ρ1 = 0·2 and 0·69, respectively.
The CLW and exact profiles in both figures are indistinguishable.

We now present the effect of varying wave height by considering the variation of the exact
profile for ρ2/ρ1 = 0·2 and variousH/h, following the curve in Figure 2. The profiles are
plotted together in Figure 6 forH/h = 0·05,0·06 and 0·067. One feature of this plot is the
pointx = x1/2 for each profile. The tangent of the profile at around this point becomes steeper
with increasing amplitude, since the crest moves up and the trough moves in the opposite
direction, but not at the same rate,i.e. the crest rises more than the trough falls. Hence, the
profile is sharper for higherH/h. In Figure 7 similar profiles are shown forρ2/ρ1 = 0·69,
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andH/h = 0·06,0·12 and 0·18. However, the highest wave-height that we can use does not
give a vertical point as suggested by Holyer [15].
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Figure 4. The interfacial profiles from the exact pro-
cedure and the approximate equations atρ2/ρ1 =
0·2, kh = 0·1.

Figure 5. Similar to Figure 4, withρ2/ρ1 = 0·69.

The profile of the interface atkh = 0·2 does differ significantly from calculations atkh =
0·1 if we use the same value ofH/h. However, the main difference is in the physical character,
i.e. a larger wave height must be applied to get the same value ofH/h for largerkh, which
increases the level of the interface.
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Figure 6. Three exact interfacial-profiles atρ2/ρ1 =
0·2, kh = 0·1 and forH/h = 0·05,0·06,0·067.

Figure 7. Three exact interfacial-profiles atρ2/ρ1 =
0·69, kh= 0·1 and forH/h = 0·06,0·12,0·18.

6. Concluding remarks

We have generalised the long-wave theories for one homogeneous layer (KdV) and for in-
terfacial waves of a two-layer fluid with almost equal densities (BO). Our single equation
representing the relative perturbationf of the interfacial profile from its undisturbed plane
y = h is given as equation (7) which is called the composite long-wave (CLW) equation. We
found that the range of validity for the CLW equation is

ρ2/ρ1 = O(kh), H/h = O(kh)2.

In describing the wave speed and profile of the interfacial waves, we used numerical meth-
ods to solve the CLW equation and to solve the ‘exact’ problem. Comparison was then made
between both numerical results, and also with the analytic results of the BO equation. The
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effect of each parameter (the density ratio, the wave height and the depth of the lower fluid)
was observed on the speed and the profile of these interfacial waves.

Our exact calculations show that the wave speed increases monotonically with the wave
height. Therefore, the highest wave is the fastest. For infinitesimal wave height, the speed
agrees with the linearised theory. When the effect of the density ratio is included, an increase
of the wave speed occurs with decreasing density ratio, where the smallest density ratio cor-
responds to free surface waves. The third parameter, the depth of the lower fluid, also has a
reciprocal effect on the wave speed. Hence, an interfacial wave on a shallow lower-water is
faster than a corresponding wave on a deep lower-water. This agrees with results in references
on the free-surface problem (see [13] and [12]).

Moreover, we have also displayed the character of the nonlinear wave profile, where a
sharp crest and a flat trough are the typical profile for small density ratio, and for large density
ratio with large wave height. At a fixed wave height, this must change smoothly to a different
form as the density ratio increases,i.e.a larger density ratio gives less nonlinearity, and hence
a more nearly cosine profile, which is more symmetric between the crest and the trough. The
nonlinearity from small density ratio can be preserved for larger density ratio by increasing
the wave height. Note that our exact procedure is able to compute high waves accurately, but
the highest solution with a vertical portion of the interface could not be reached.

In general, the above conclusions can be shown both from the exact calculations and the
two approximate equations,i.e. the BO and the CLW equations. The KdV equation is just
a special case of the CLW equation corresponding to zero density ratio. This shows that the
approximations give the same qualitative result. Quantitatively, they are also both in good
agreement with the exact computations for small wave amplitude and a finite (non-small)
density ratio. However, the CLW equation is a significant improvement over the BO equation
for small density ratio.
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